Mario Campos

Musings, with a hint of code.

Math Demonstration

(TBD) Demonstrates how to use math --- courtesy of [$ K^AT_EX $] --- in the brutalist-minimalist style.

NEEDS REWORK!

Pellentesque condimentum, magna ut suscipit hendrerit, ipsum augue ornare nulla, non luctus diam neque sit amet urna FooBar and

In the meantime mathemtical formulas are properly transscribed if the
summary is take from the first [$ N $] words of an article, but
and explicit summary is any way recommended. Let's have some math:
[$ \psi^2 > \alpha_0 $].

This is a second paragraph, just to see how that comes out. Aliquam
erat volutpat.  Nunc eleifend leo vitae magna.  In id erat non orci
commodo lobortis.  Proin neque massa, cursus ut, gravida ut, lobortis
eget, lacus.  Sed diam.  Praesent fermentum tempor tellus.  Nullam
tempus.



### Consectetuer adipiscing elit.

Dolor sit amet, consectetuer adipiscing elit.  Donec hendrerit tempor
tellus.  Donec pretium posuere tellus. [$ \psi^2 > a^2 $]. Proin quam
nisl, tincidunt et -- [$ a < b $] -- mattis eget, convallis nec,
purus: [$ \psi^2 > a^2 $].

Should not render as math: We write a formula like *[$* \psi *$]*.

Now a math display:

[$$   \psi^2 > a^2a   \newline
      asdasdas \\\\
	  asdsd
$$]

Frankly. the source is a bit ugly, b/c we cannot have an empty line in
the source (this is different from TeX).

[$$
  \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} \equiv 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }
$$]
[$$
  \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
$$]


### Consectetuer adipiscing elit.

Donec hendrerit tempor tellus.  Donec pretium posuere tellus.  Proin
quam nisl, tincidunt et, mattis eget, convallis nec, purus.  Cum
sociis natoque penatibus et magnis dis parturient montes, nascetur
ridiculus mus.  Nulla posuere.  Donec vitae dolor.  Nullam tristique
diam non turpis.  Cras placerat accumsan nulla.  Nullam rutrum.  Nam
vestibulum accumsan nisl.

### Pellentesque dapibus

Donec posuere augue in quam.  Etiam vel tortor sodales tellus
ultricies commodo.  Suspendisse potenti.  Aenean in sem ac leo mollis
blandit.  Donec neque quam, dignissim in, mollis nec, sagittis eu,
wisi.  Phasellus lacus.  Etiam laoreet quam sed arcu.  Phasellus at
dui in ligula mollis ultricies.  Integer placerat tristique nisl.
Praesent augue.  Fusce commodo.  Vestibulum convallis, lorem a tempus
semper, dui dui euismod elit, vitae placerat urna tortor vitae lacus.
Nullam libero mauris, consequat quis, varius et, dictum id, arcu.
Mauris mollis tincidunt felis.  Aliquam feugiat tellus ut neque.
Nulla facilisis, risus a rhoncus fermentum, tellus tellus lacinia
purus, et dictum nunc justo sit amet elit.

Source: https://mario-campos.github.io/documentation/math/, 2022-02-14